NHẮC BẠN HÀNG NGÀY

Tài nguyên Thư viện

Ảnh ngẫu nhiên

Z7379354547305_389637c4d51027980860d8ffded866f4.jpg Z7379354547061_50a61080129034e531db5abff4381864.jpg Z7379354465935_9e7c24ac6bd32c6ccb818cd6a8e2cc7f.jpg Z7367613615834_dce697759d2f8ebdc5aac05126c67502.jpg Z7367613501871_523d9ebfb02944263e7ca9008989c953.jpg Z7367613481393_45f8822b6eb62e2d5c0ab0789145f0c9.jpg

Thành viên trực tuyến

1 khách và 0 thành viên

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • DANH NGÔN VỀ SÁCH

    “Chẳng người bạn nào thầm lặng và chung thủy như sách. Chẳng người cố vấn nào gần gũi và thông thái vượt bậc như sách. Sách cũng chính là người thầy kiên nhẫn nhất của con người.” – Charles W. Eliot - Robertson Davies.”

    NHẠC TẾT 2026

    Học và Ôn Luyện Theo Cấu Trúc Đề Thi Môn Toán - Vũ Thế Hựu

    Wait
    • Begin_button
    • Prev_button
    • Play_button
    • Stop_button
    • Next_button
    • End_button
    • 0 / 0
    • Loading_status
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Lê Thị Minh Hiền
    Ngày gửi: 10h:38' 26-02-2024
    Dung lượng: 99.2 MB
    Số lượt tải: 6
    Số lượt thích: 0 người
    510.76
    rS. VO THE HirU - NGUYEN VINH CAN

    H419V





    HOC a ON LUYIN
    T H E O C A U T R U C D E THI
    MON

    I

    TS. VU THE HlfU - NGUYEN VINH CAN

    nioc & ON LUYEN
    T H E O C A U T R U C D E THI

    THi; VIEN TINH BINH THU*N

    ON THI
    DAI HOC
    Ha

    NQI

    N H A X U A T B A N D A I HQC QUOC G I A H A N O I

    H O C vA

    NHA XUAT B A N DAI HQC QUOC GIA HA NQI

    16 Hang Chuoi - Hai Ba TrUng - Ha Npi
    Dien thoai: Bien tap - Ciie ban: (04) 39714896;
    Hanh ctiinii: (04)3 9714899; Tong Bien tap: (04) 39714897
    Fax: (04) 39714899

    Chiu trdch nhiem xuat ban:
    Gidm doc - Tong bien tap: T S . P H A M T H I T R A M

    Nha sach H O N G A N

    Che ban:

    THAI VAN

    Sica bai:

    H O N G SON

    Bien tap:

    Trinh

    bay bia:

    THAI HOC

    Thj^c hi?n lien kit: Nha s a c h H O N G A N

    SACH LIEN KET
    O NLUYEN THEO CAU TRUC D ET H I M O N TOAN THPT

    IVla so: 1L - 65DH2013
    In 2.000 cuon, I
    S6'xu3it ban: 246 - 2013/CXB/8 - 33/DHQGHN, ngay 25/02/2013
    Quyet dinh xua't ban so: 58LK-TI\i/QD - NXBOHQGHN ngay 01/03/2013.
    In xong va nop li/u chieu quy II n§m 2013.

    GlAl TICH

    Hpc va on-luyen theo CTDT mon Toan THPT

    3

    M f

    IJBISOTOHdPVflMSy'fiT
    §1. HOAN VI, CHINH HdP, TO HOP
    KIEN THlTC

    1.

    Quy t^c CQng v a quy t i c n h a n
    a) Quy tdc cong :
    Neu tap )igp A c6 m p h a n til, tap hgfp B c6 n p h a n tuf va giCTa A va B
    k h o n g CO p h a n tijf chung t h i c6 m + n each chon m o t p h a n tuf thuoc A
    hoac thuoc B .
    b) Quy tdc nhdn :
    Be hoan t h a n h m o t cong viec A p h a i thiic h i e n h a i cong doan. Cong
    doan I CO m each thiic h i e n , cong doan I I c6 n each thiic h i e n t h i c6
    m.n each d e hoan t h a n h cong viec A .
    Tong quat, de hoan t h a n h cong viec A p h a i qua k cong doan. Cong
    doan thijf i ( 1 < i < k ) c6 m i each t h i t h i c6 m i . m 2 . . . m k each de hoan
    t h a n h cong viec A .
    2.
    Hoan vi
    M o t tap hop A huTu h a n c6 n p h a n tuf ( n > 1). M 5 i each sap thuf til eac
    phan tiif ciia t a p hop A duoc goi l a m o t hoan vi ciia n p h a n tuf eua A .
    Dinh li : So hoan v i khac nhau ciia n p h a n til bang :
    Pn = n ( n - l ) ( n - 2 ) . . . 2 . 1 = n !
    3.
    C h i n h hrfp
    M o t tap hop A hOTu h a n gom n phan tuf (n > 1) va so nguyen k
    (0 < k < n). M o i tap hop eon eua A gom k phan til sSp theo mot thuf tiT
    nhat d i n h dLfgrc goi la mot chinh hap chap k cua n phan tuf.
    Dinh li : So c h i n h hop chap k ciia n p h a n tuf bang :
    A;; = n ( n - l ) ( n - 2)...(n - k + 1) =
    (n - k ) !
    4.

    (Quy irde : 0! = 1).
    T o hofp
    Cho t a p h o p A hufu h a n c6 n p h a n tuf ( n > 1) va so nguyen k
    (0 < k < n). M o i tap hop con gom k p h a n tuf ciia A (khong t i n h thuf tU
    eac p h a n tuf) g o i l a m o t to hop chap k cua n p h a n tuf.
    n'
    A''
    Dinh li : So to hop chap k cua n p h a n tuf l a : C'' =
    = —(n-k)!k!
    k!
    He qua:

    Cl=C:=l;

    0^= Cr''; C ^ = C!; + C ^ \
    HQC va on luy$n theo CTDT mon Toan THPT S 5

    1.
    a)

    BAI TAP
    C h o cac chuf so 2 , 3, 4 , 5, 6, 7.
    C o b a o n h i e u so' t\i n h i e n c6 h a i chuf so ducfc t a o n e n til t a p h o p c a c
    chuf so d a cho.
    b)

    C o bao n h i e u so t i i n h i e n c6 h a i chuf so k h a c n h a u difOc tao n e n tiT t a p
    hcrp chuf so d a cho.

    CHI
    a)

    DAN
    D e t a o m o t so c6 h a i chuf so t a t h i f c h i e n h a i c o n g d o a n :

    1. C h o n m o t chuf so l a m chuf so h a n g chuc : c6 6 k e t qua c6 t h e .
    2.

    C h o n m o t chuf so l a m chuf so h a n g d o n v i : c6 6 k e t qua c6 t h e .
    T h e o q u y t ^ c n h a n so k e t q u a t a o t h a n h cac so c6 h a i chuf so tii t a p
    hgfp 6 chCif so d a cho l a : n = 6 x 6 = 3 6 so'.

    b)

    L a p l u a n g i o n g n h i f c a u a ) n h u i i g liTu y sir k h a c b i e t so vdfi trifofng h o p
    t r e n of cho so d u g c t a o t h a n h c6 h a i chuf so k h a c n h a u . D o do t a c6 k e t
    q u a n h u sau :
    1. C h o n m o t chuf so l a m chuf so' h a n g chuc : c6 6 k e t q u a c6 t h e .
    2.

    C h o n m o t chuf so l a m chuf so h a n g d o n v i : c6 5 k e t q u a c6 t h e ( v i chuf
    so n a y p h a i k h a c chuf so h a n g chuc d a c h o n trifdrc do).
    T h e o q u y t a c n h a n : so cac so c6 h a i chuf so k h a c n h a u difcfc t a o t h a n h
    tCr t a p h o p 6 chuf so d a cho l a : n ' = 6 x 5 = 3 0 so.
    Cdch

    khac

    : M o i so c6 h a i chuf so t a o t h a n h tiT 6 chuT so d a cho l a m o t

    t a p hop c o n s^p thuf tiT g o m h a i p h a n tuf tiT 6 p h a n tuf d a cho. D o do so
    cac so C O h a i chuf so k h a c n h a u t a o t h a n h tiT 6 chuf so d a cho l a so
    c h i n h hop c h a p 2 cua t a p hop 6 p h a n tuf.
    n = Ag = 6.5 = 30 so.

    2.

    C h o t a p h o p cac cha so 0, 1, 2, 3 , 4, 5, 6.
    C o bao n h i e u so t U n h i e n c6 4 chuf so k h a c n h a u tCmg d o i tii t a p

    b)

    C o bao n h i e u so t u n h i e n c6 4 chuf so tii t a p h o p cac chuf so d a cho.

    a)

    hop

    cac chuf so d a cho.

    CHI
    a)

    DAN
    Co 6 each c h o n chuf so h a n g n g h i n (chuf so d a u t i e n p h a i k h a c 0), 7 e a c h
    c h o n chff so h a n g t r a m , 7 e a c h c h o n chuf so h a n g chuc v a 7 e a c h c h o n
    chuf so h a n g

    d o n v i . T h e o q u y tSe n h a n

    : so each t a o t h a n h so t i f

    n h i e n 4 chuf so tii t a p h o p 7 chiJ so d a cho l a :
    N = 6 x 7 x 7 x 7
    b)

    = 2 0 5 8 so.

    C o 6 e a c h c h o n chuf so h a n g n g h i n , k h i c h o n x o n g chuf so h a n g

    nghin

    c o n l a i 6 chuf so k h a c vdi chuf so h a n g n g h i n d a c h o n . V a y c6 6 e a c h
    chon

    chuf so h a n g

    t r a m . K h i d a c h o n chuf so h a n g

    nghin va hang

    t r a m , e o n l a i 5 ehOf so k h a c v d i cac chuf so d a c h o n . D o do eo 5 e a c h

    6 :S; IS. Vu The Hi/u - NguySn Vinh Cin

    chpn chOf so h a n g chuc. Tifcfng tir, c6 4 each chon chOr so h a n g don v i .
    Theo quy tac n h a n . So cac so txi n h i e n c6 4 chOf so khac nhau tCfng doi
    difcfc tao t h a n h tix t a p hop 7 chuf so da cho l a :
    N ' = 6 X 6 X 5 X 4 = 720 so.
    Cdch lap luan khdc : M o i so tiT n h i e n c6 4 chOf so khac nhau tao
    t h a n h tCr tap hop 7 chOf so da cho l a m o t c h i n h hgrp chap 4 ti^ t a p hgfp
    7 chuf so m a cac c h i n h hgfp nay k h o n g c6 chuT so 0 or dau. Do do so cac
    so CO 4 chijf so khac nhau tiT 7 chijf so l a :
    N' =
    - Ag = 7 X 6 X 5 X 4 - 6 X 5 X 4 = 720 so.
    3.

    Mot to hoc sinh c6 10 ngUofi xep thijf tif thanh hang 1 de vao lorp. Hoi
    a) Co bao n h i e u each de to xep h a n g vao l(Jp.
    b) Co bao n h i e u each de to xep h a n g vao Idfp sao cho h a i b a n A v a B eua
    to luon d i canh nhau va A dufng tri/dtc B .

    CHI

    D A N

    a) So each xep h a n g bang so hoan v i ciia 10 p h a n tiif.
    N i = 10! = 3628800 each.
    b) Coi h a i b a n A va B n h i i m o t ngudi. Do do so each xep h a n g ciia to de
    vao 16p t r o n g do h a i b a n A v a B d i l i e n nhau bang so hoan v i cua 9
    phan tijf.
    N2 = 9! = 362880 each.
    4.
    Co bao nhieu each xep 6 ngiicfi ngoi vao m o t ban a n 6 cho t r o n g cac
    triiofng hcfp sau :
    a) S^p 6 ngiTofi theo h a n g ngang ciia m o t ban a n d a i .
    b) S4J) 6 ngiTori ngoi vong quanh m o t b a n a n t r o n .
    CHI

    D A N

    a) M o i each ngoi theo h a n g ngang l a m o t hoan v i cua 6 p h a n tijf. So' each
    sap xep l a : 6! = 720 each.
    b) Gia suf 6 ngifofi a n diTOc d a n h so thijf t i f la : 1, 2, 3, 4, 5, 6 v a m o t each
    sap xep theo b a n t r o n n h i i h i n h .
    2 5 1 3 6 4

    (1)

    5

    1 3 6 4 2

    (2)

    1 3 6 4 2 5

    (3)

    3 6 4 2 5 1

    (4)

    6 4 2 5 1 3

    (5)

    4 2 5 1 3 6

    (6)
    Neu t a eat b a n t r o n a v i t r i giCfa 2 va 4 r o i t r a i d a i theo b a n ngang
    t h i t a CO hoan v i (1) tUofng ijfng m o t each xep ngiiofi ngoi theo ban a n
    dai. TiTofng txi c a t of v i t r i giufa 5 va 2. N h u vay m o t each sap xep theo
    ban t r o n tiiOng ufng vdri 6 each s a p xep theo b a n d a i . Do do so each
    Hoc va on luyen theo CTDT mon Toan THPT

    7

    5.

    x e p 6 ngiTofi n g o i q u a n h b a n a n t r o n l a :
    N = — = 120 e a c h .
    6
    M o t t o CO 15 ngifofi g o m 9 n a m v a 6 nOf. C a n l a p n h o m cong t a e eo 4
    ngUdri. H o i eo b a o n h i e u e a c h t h a n h l a p n h o m t r o n g m o i trifcfng h o p
    sau d a y :
    a) N h o m c6 3 n a m v a 1 nur.
    b ) So n a m v a nCf t r o n g n h o m b a n g n h a u .
    c) P h a i CO i t n h a t m o t n a m .

    CHI

    DAN

    9 8.7
    a) So e a c h c h o n 3 n a m t r o n g so 9 n a m l a : Cj! = "
    = 84
    1.2.3
    So e a c h c h o n 1 niJ t r o n g so 6 nOr l a : Cg = 6
    So each t h a n h l a p n h o m g o m 3 n a m v a 1 nCf (theo quy tSc n h a n ) l a :
    N i = C^C^ = 5 0 4 e a c h .
    b ) So e a c h l a p n h o m g o m 2 n a m v a 2 nuf l a :
    N2=

    C^C^ = —
    '
    '
    1.2

    1.2

    = 540 each.

    c) So e a c h t h a n h l a p n h o m 4 ngu'ofi t r o n g do c6 i t n h a t 1 n a m l a : 1
    nam,

    3 nO h o a c 2 n a m , 2 nuf hoae 3 n a m , 1 nur h o a c 4 n a m .
    — Cg.Cg +

    .Cg 4~ Cg.Cg "I" Cg

    _ 6.5.4
    9.8 6.5.
    9.8.7 ^
    9.8.7.6
    = 9.
    +
    +
    .6 +
    = 1350 each.
    1.2.3
    1.2 1.2
    1.2.3
    1.2.3.4
    Ghi chu : C u n g eo t h e l a p l u a n n h i f sau :
    C a t o CO 15 ngiTcfi. So e a c h l a p n h o m 4 n g U d i t u y y l a :
    ^ 4 ^ ^ — 1^4 .x1 3o. 1^2 ^ ^ g g g ^ ^ ^ ^
    _
    1
    5
    .
    ~
    1.2.3.4
    1.2.3.4
    So e a c h l a p n h o m 4 ngUofi t o a n nuf l a : C ^ = Cg = 6.5. = 15 e a c h .
    1.2
    So e a c h l a p n h o m 4 n g i / d i eo i t n h a t 1 n a m l a :
    N = CJs - C^ = 1365 - 15 = 1 3 5 0 e a c h .
    T r o n g m a t p h a n g eo n d i e m p h a n b i e t ( n > 3 ) t r o n g do eo d i i n g k

    6.

    d i e m n S m t r e n m o t d i i d n g t h S n g (3 < k < n ) . H o i c6 bao n h i e u t a m
    g i a c n h a n cac d i e m d a cho l a d i n h .
    CHIDAN
    Cuf 3 d i e m k h o n g t h S n g h a n g t a o t h a n h m o t t a m g i a c . So cac t a p h o p
    c o n 3 d i e m t r o n g n d i e m l a : C^. So cac t a p c o n 3 d i e m t r o n g k d i e m
    t r e n diTcfng t h i n g l a : C^. So t a m g i a c c6 3 d i n h l a cac d i e m d a cho
    l a : N = C^ - Cl t a m g i a c .

    8 ;

    TS. Vu The Hi/u - Nguyen VTnh Can

    7. a) Co b a o nhieu so t i i n h i e n l a so chan c6 6 chiif so doi m o t khac nhau
    va chuf so dau t i e n la chOf so le.
    b) Co bao nhieu so t i i n h i e n c6 6 chuf so doi mot khac nhau, trong do c6
    dung 3 chuf so le, 3 chuf so chSn (chuf so dau t i e n phai khac 0).
    CHI D A N

    a) So can t i m c6 d a n g : x = a^agaga^agag t r o n g do a i ,

    ae

    l a y cac chOf

    so 0, 1, 2,
    8, 9 vdfi a i ?i 0, ai aj v d i 1 < i ?i j < 6.
    - V i X la so chSn nen ae c6 5 each chon tiT cac chuT so 0, 2, 4, 6, 8.
    - V i a i la chuT so le nen c6 5 each chon tiT cac chuf so 1, 3, 5, 7, 9.
    Con l a i a2a3a4a5 l a m o t chinh hop chap 4 eiia 8 chuf so con l a i s a u k h i
    da chon ae va a i . Theo q u y t^c n h a n , so cac so can xac d i n h l a :
    N i = S.S-Ag = 5.5.8.7.6.5 = 42000 so.
    b) M o t so theo yeu c a u de b a i gom 3 chuf so tii tap X i = |0; 2; 4; 6; 81 va
    3 chuf so tCr t a p hop X2 = I I ; 3; 5; 7; 91 ghep l a i va loai d i cac day 6
    chuf so CO chuf so 0 dufng dau.
    So each lay 3 chuf so thuoc t a p X i la : Ci? = 10 each.
    So each lay 3 p h a n tuf thuoc X2 l a : Cg = 10 each.
    So' each ghep 3 p h a n tuf l a y txi X i v o i 3 p h a n tuf l a y tii X2 l a :
    C^C^ = 10.10 = 100 each.
    So' day so' eo thuf t i f eiia 6 p h a n tuf diioc ghep l a i l a :
    100.6! = 72000 day.
    Cac day so c6 chuf so 0 a dau g o m 2 chiJ so khac 0 ciia X i va 3 chuf so'
    ciia X2 : So cac day so nhif t r e n la : C 4 . C 5 . 5 ! = 7200 day.
    So cac so theo yeu cau de b a i la :
    N2 - C ^ C ^ 6 ! - C ^ C ^ 5 ! = 72000 - 7200 = 64800 so.
    8.

    M o t hop diing 4 v i e n b i do, 5 v i e n h i t r a n g va 6 v i e n b i vang. NgLfofi
    ta chon r a 4 v i e n b i t i f hop do. H o i c6 bao nhieu each l a y de t r o n g so
    b i j a y r a k h o n g dii ca 3 mau.

    CHI D A N

    Cdch 1 : So each chon 4 v i e n b i k h o n g d u 3 mau b a n g so' each chon 4
    v i e n b a t k i trir d i so each chon 4 v i e n c6 ca 3 mau.
    N = Cjg - (C^ .C^ .C^ + C^ .C\ + Cl .C\) = 645 each.
    Cdch 2 : So each chon 4 v i e n b i k h o n g d u 3 m a u bang so each chon 4
    v i e n m o t m a u (4 do, 4 t r a n g va 4 vang) cong v d i so each chon 4 v i e n
    hai mau ( 1 do, 3 t r a n g hoae 2 do, 2 t r a n g hoac 3 do, 1 t r a n g hoae 1
    do, 3 v a n g hoac 2 do, 2 v a n g hoae 3 do, 1 v a n g hoae 1 t r S n g , 3 v a n g
    hoae 2 trSng, 2 v a n g hoac 3 t r a n g , 1 vang).
    N = c : +Ct +CI+

    ClCl

    + ClCl

    + C^C^ + ... + C^C^ = 645 caeh.
    Hoc va on luyen theo C T D T m o n loan T H P T SI 9

    9.
    Co 15 n a m va 15 nuT k h a c h du l i c h dijfng t h a n h vong t r o n quanh ngon
    lijfa t r a i . H o i c6 bao n h i e u each xep de k h o n g eo triTcfng hop hai ngi/6i
    eCing gidfi canh nhau.
    CHI DAN
    ThiTe h i e n sap xep bang each d a n h so 30 cho t r e n di/orng t r o n tii 1
    den 30 va cho n a m dufng so le nuT dufng cho so chSn hoac ngi/gc l a i (2
    each). Co 15! each sSp n a m dufng trong cae cho so' le (hoac chSn) va
    15! each sdp nuf dufng t r o n g cae cho so ch^n (hoac le).
    V i diidng t r o n 30 cho nen m o i each sSp xep nao do xoay tua 30 cho
    theo dung t r a t tiT do ta cung chi eo mot each sap t r e n dirofng t r o n
    (xem b a i so 4).
    Do do so each sSp xep theo difcfng t r o n 30 k h a c h du l i c h theo yeu cau
    2.(15!)(15!)
    , ,
    de la : N =
    = 14!.15! each.
    30
    10. Chufng m i n h cae dang thufc :
    a)
    +
    + ... +
    = ——- (1) t r o n g do A^ la c h i n h hop chap 2 eua n.
    Ag
    A3
    A„
    n
    b)
    CHI

    C;; = C;;:; + Cl;}^ + ... + Cl:\) t r o n g do C; la to hop chap r ciia n.
    DAN

    a) V(Ji k e N, k > 2 ta c6 : A', = k ( k - 1)
    ^ =
    =
    - '
    ^
    A^
    k(k-l)
    k-1
    k
    Thay k = 2, 3,
    n vao (*) ta c6 ve t r a i ciia (1) la :
    (1
    (I
    V
    f 1
    1^
    — —
    — — —
    — —
    +... +
    [n-1
    nj
    u
    2. l 2 3v
    b) Theo t i n h chat eua to hop ta c6 :

    =

    Cn_3

    (*)

    + C^^g

    Cong ve vdi ve cae dang thufc t r e n ta

    diTOe :

    c:;-c::;+c-^3+c::u...+c:-uc:
    Do C;; = C;::} = l n e n thay C;: d dang thufc cuoi bori C^:}

    ta

    dugfc

    dang

    thufc (2) can chufng m i n h .
    11.

    Chufng m i n h bat dang thile :
    t r o n g do k e N, k < 2000,

    C^ooi +

    ^ C\Z + CfZ

    la to hop chap k eua n p h a n tuf.

    1 0 t4l TS. Vu The Hi/u - Nguyin Vinh CSn

    CHI DAN
    V(Ji 0 < k < 1000 t h i
    ^2001
    k+1
    2001
    k
    '^2001 -

    2001!

    (k + l ) ! ( 2 0 0 0 - k ) !

    k +1

    k!(2001-k)!

    2001!

    2001-k

    '-^2001 -

    '^2001

    -

    , plOOO _ p l O O l
    •• - '-^2001 ~ ^ 2 0 0 1

    pk
    *-^2001

    <1

    p k + 1 ^ plOOO
    ^2001 — ^2001

    plOOl
    ^^2001
    -111-k

    M a t k h a c , v 6 i 1 0 0 0 < k < 2 0 0 0 t h e o t i n h c h a t ciia t o h o p C ' = C;;'^ t a

    - CIZ'^

    • ^ 2 0 0 1 ^ ^-^2001 ~" '^2001

    ' "^2001

    < Cir, +CIZ\i 0 < 2000 - k < 1000,
    -

    '^2001

    ' ^2001

    0 < 2 0 0 1 - k < 1 0 0 0 t h e o p h a n t r e n d a chufng m i n h .

    C A C BAI TAP Tl/ GIAI
    12.

    TCr d i e m A d e n d i e m B n g i / d i t a c6 t h e d i q u a C h o a c d i q u a D v a
    k h o n g CO diTcfng d i t h a n g tii C d e n D . Til A d i t h a n g d e n C c6 2 e a c h ,
    t i r C d i t h a n g d e n B c6 3 e a c h . TCr A d i t h a n g d e n D c6 3 e a c h tix D d i
    t h a n g d e n B eo 4 e a c h .

    a) H o i txi A CO b a o n h i e u e a c h d i tdfi B ?
    b)

    H o i tCr A d e n B r o i til B trdf v e A

    A /

    \

    CO b a o n h i e u e a c h ?
    DS

    :

    3 X^/

    a) 18 e a c h
    b) (18)^ e a c h .

    13.

    4

    D

    TCr 7 chOf so 0, 1 , 2 , 3, 4, 5, 6 eo t h e g h i dirge b a o n h i e u so tiT n h i e n
    m o i so' CO 5 chCT so k h a c n h a u tCrng d o i .

    DS : 2 1 6 0 so.
    14.
    a)
    b)

    C h o t a p h o p cac chOf so X = |0; 1 ; 2 ; 3; 4 ; 5; 61.
    D u n g t a p h o p X eo t h e g h i dufcfe bao n h i e u so tiT n h i e n eo 5 chiT so.
    D u n g t a p h o p X c6 t h e g h i dirge b a o n h i e u so t i r n h i e n c6 5 chOf so'
    k h a c n h a u tCrng d o i .

    c) DCing t a p h g p X c6 t h e g h i dugc b a o n h i e u so tiT n h i e n c6 5 ehCt so
    k h a c n h a u l a so e h S n .
    DS
    15.

    :

    a ) 6.7* so

    b ) 6 l 5 . 4 . 3 so

    e) A ^ + 15A^ so.

    M o t t o h o c s i n h c6 5 n a m , 5 nOf x e p t h a n h m o t h a n g d o c .

    a) Co b a o n h i e u e a c h x e p k h a c n h a u .
    b) Co bao n h i e u each x e p h a n g sao cho h a i ngircfi dijfng k e n h a u k h a c g i d i .
    DS : a ) 1 0 ! e a c h
    16.

    b ) 2(5!)^ e a c h .

    M o t i g p CO 2 5 n a m h o c s i n h v a 2 0 nuf h o c s i n h . C a n c h o n m o t n h o m
    c o n g t a c 3 ngiTdi. H o i eo bao n h i e u each c h g n t r o n g m o i t r i r d n g h g p s a u

    a) B a h o c s i n h b a t k i eua Idp.
    b)

    H a i nijf s i n h v a m o t n a m s i n h .
    Hpc va on luyen theo CTDT mon Toan THPT I J : 1 1

    c)

    B a hoc s i n h c6 i t n h a t m o t nuf.
    DS

    17.

    :

    a) C;;^ e a c h

    b) 25.C^o e a c h

    c) C'^^ -Cl,

    each.

    Co bao n h i e u e a c h p h a n p h o i 7 do v a t cho 3 n g U d i t r o n g cac trUcfng
    h o p sau :
    M o i n g u d i i t n h a t m o t do v a t v a k h o n g q u a 3 do v a t .

    b)

    M o t ngUofi n h a n 3 do v a t , eon 2 ngUcfi m o i ngUcfi h a i do v a t .

    a)

    DS
    18.

    : a) 3.C^C^ e a c h

    M o t to

    CO

    b) S.CtCl

    + SCl.Cl

    each.

    9 n a m v a 3 nOf.

    Co bao n h i e u e a c h c h i a t o t h a n h 3 n h o m m o i n h o m 4 ngUofi v a t r o n g

    b)

    Co bao n h i e u e a c h c h o n m o t n h o m 4 ngUcfi t r o n g do eo 1 nijf.

    a)

    m o i n h o m c6 1 nuf.
    DS

    : a) 3.C^ e a c h

    b) 3.C;;.2C^ = 10080 each.

    19. T i m cac so n g u y e n d u o n g x, y t h o a m a n cac d a n g thufe :
    6
    f)S

    20.

    :

    X

    ^ ^ ^ " 5 ^

    " 2 ^



    = 8, y = 3.

    Co bao n h i e u so t U n h i e n chain c6 4 ehuf so d o i m o t k h a c n h a u .
    DS

    21.

    •.n=

    Al+

    4.8.8

    = 7 6 0 so.

    C h o d a g i a c d e u 2 n d i n h AiA2...A2n, n > 2 n o i t i e p t r o n g d u d n g t r o n .
    B i e t r a n g so t a m g i a c c6 d i n h l a 3 t r o n g 2 n d i e m t r e n n h i e u g a p

    20

    I a n so h i n h ehuf n h a t eo d i n h l a 4 t r o n g 2 n d i n h t r e n . T i m so n .
    £>S : n = 8.
    22.

    T i m so t U n h i e n n , b i e t r a n g C" + 2C;, + 4 C ' + ... + 2 " C " = 2 4 3 .
    : n = 5.

    T r o n g m o t m o n h o c , t h a y g i a o eo 3 0 c a u h o i k h a c n h a u , g o m 5 cau

    24.

    G i a i b a t p h u o n g t r i n h ( v d i h a i a n n , k G N)

    23.

    h o i k h o , 10 c a u h o i t r u n g b i n h v a 15 c a u h o i de. T i r 30 cau h o i do c6
    t h e l a p dUcfc bao n h i e u de k i e m t r a g o m

    5 cau k h a c n h a u sao

    cho

    t r o n g m 5 i de n h a t t h i e t p h a i eo d u b a l o a i cau h o i ( k h o , t r u n g b i n h ,
    de) v a so c a u h o i de k h o n g i t h o n 2.
    DS:n=
    25.

    Cl,ClCl+C',,C\,Cl+C%C\f

    = 56785 d l .

    C h o t a p hcfp A eo n p h a n tuf ( n > 4). B i e t r S n g so t a p h o p eon eo 4
    p h a n tuf eua A g a p 2 0 I a n so t a p hofp c o n c6 2 p h a n tuf ciia A . T i m so'
    t U n h i e n k sao cho so t a p h o p eon eo k p h a n tuf eua A l a I d n n h a t .
    : n = 18, C^g > C\^'

    flS

    o

    k = 9.

    12 ;.'; TS. Vu Th§' Hyu - Nguygn VTnh Can

    §2. NHI THlfC NIUTCfN
    K I E N THLTC
    1.

    N h i thufc N i u t c f n
    (a + b ) " = Cf,a"b° + Cla"-'h

    + ... + ClJa'^'^b'^ + ... + C > V = Xc;;a"-''b''
    k=0

    Ydi
    2.

    q u y vide a, b ^ 0, a" = b° = 1 , C° = 1 .

    Tarn giac P a t c a n
    Cac h e so' ciia n h i thufc N i u t o r n ufng vdi n = 0, 1 , 2, 3, ... c6 t h e s a p x e p
    diidfi d a n g t a r n g i a c dtfofi d a y g o i l a t a r n g i a c P a t c a n .
    1

    n =0
    n =1

    1

    n =2

    1

    n =3

    2

    1

    n =4

    1

    3

    4

    n =6

    1
    3

    1;
    4 : 1

    6

    5

    n =5

    1

    10

    10
    20

    15

    6

    5
    15

    1
    6

    1

    T r o n g m 6 i k h u n g t h e h i e n t i n h c h a t t o n g h a i h e so h a n g t r e n
    so h a n g or h a n g diTdfi h a y C^'^ + Cj^ =

    bang

    Cl;^i.

    BAITAE^
    26.

    T i m cac so h a n g k h o n g chufa x t r o n g k h a i t r i e n n h i thufc N i u t O n ciia
    vdfi X > 0.
    /X

    J
    (Trich

    de TSDH

    kho'i D nam

    2004)

    CHI D A N
    Vdfi

    X >

    0, t a

    1

    CO

    : \/x = x ^ ;

    I

    _ i

    = x "*

    —j=r

    %/x

    1

    f
    /X +•

    /x;

    = (x'^ + x
    7-k

    _k

    7-1
    -

    C ° x 3 + Cix

    1

    3 X 4 + c?x

    7-2

    2

    ^ X 4

    7

    + ... + C)x^ x"-* + ... + C l x ' ^
    So h a n g k h o n g chufa x l a so h a n g thuT k + 1 t r o n g k h a i t r i e n sao c h o :

    Hoc va on luyen theo CTOT mon Toan THPT ' 1 3

    27.

    C^'x

    x"^ =C^x 3 ^ " * =C,'x*'

    tufc la phai c6 :
    - - = 0
    3k = 4(7 - k) o k = 4
    3
    4
    Vay so hang khong chijfa x trong khai trien la :
    = 35.
    Tim so hang chinh giijfa cua nhi thufc NiutOn : (x^ - xy)^*.

    CHI DAN

    KJiai trien nhi thufc (x^ - xy)^^ c6 15 so hang, so hang chinh giiJa la
    so hang thuf 8 c6 dang :
    C L ( x ^ r " ( - x y ) ^ = -CLx^^xV^ - -3432x^V^
    28.

    Tim so hang thuf tii cua khai trien nhi thufc

    a
    b- a

    +

    b2 ' - „a2

    A"

    . Biet

    a

    rang he so ciia so' hang thuf ba cua khai trien do bSng 21.
    CHI DAN

    Trong cong thufc nhi thufc NiutOn (A + B)" so hang thuf 3 ciia khai
    trien c6 he so la : C? = 21 o
    Vay so hang thuf tii cua khai trien

    29.

    ~'^^ = 21

    o n = 7

    a
    b^-a'^^'
    la :
    b-a • +

    7-3
    ^b^-aM
    a(b + a)
    C?
    = 35
    [b-aj
    b-a
    ^ a
    J
    Biet rSng tong tat ca cac he so cua khai trien nhi thufc (x^ + 1)" bang
    1024. Hay t i m he so ciia so hang chufa x^^ trong khai trien do.

    CHIDAN

    (1 + x'r = ci +c\x' +cix' + ... + c y +... + c:y"

    Cho X = 1 ta dirge : (1 + 1)" =

    + c;, + Cf, + ... +

    + ... + C;;

    = 1024 = 2" = 2'*^ ^ n = 10
    Do do he so cua x'^ la :

    =

    6!4!

    = 210.
    /

    30.

    2

    Trong khai trien nhi thuTc NiutOn ' nx
    14
    chufa x\t rSng 5C;;-' = C'l

    -I

    1 ^ , X ^ 0, hay t i m so hang
    x^

    (Trich de TSDH khoi A -

    2012)

    CHI DAN

    bCr

    14

    = Ct

    n(n - l)(n - 2)
    5n =
    1.2.3
    n(n'^ - 3n - 28) = 0

    n = 7

    TS. Vu The' Hifu - Nguygn VTnh Can

    Thay n = 7 vao nhi thuTc Niutofn da cho t h i c6 :
    1

    -c*

    12

    .2,

    I-]

    X

    X

    2

    + ... +

    V

    f-1

    So hang chufa x^ trong khai trien la so' hang thuf k + 1 sao cho :
    7-k

    12;

    k
    .Xy

    X^
    27-k

    ^ 2 ( 7 - k ) - k = 5=^k = 3

    Vay so hang chufa x la : -C^
    31.

    CHI

    1

    7.6.5

    1

    ^5^_35^3

    1.2.3 2'
    16
    Tim he so cua so' hang chufa x^° trong khai trien nhi thufc NiutOn ciia
    (2 + x)", biet rang
    3"C° - 3""'C;, + 3"'C^ - 3"-''Cl + ... + (-1)"C,'; = 2048.
    (Trich de TSDH khoi B - 2007)
    vXy

    D A N

    Xet khai trien nhi thiifc Niutcfri :

    (x - D" = c>" - c^x"-' + c'^x"-' - cf,x"-^ +... + (-1)"c;;

    Cho X = 3 ta diroc :

    2" = 3"c;; -3"-'c;, +3""'cf, -3"-'c^

    + ... + (-i)"c;;

    = 2048

    2" = 2048 = 2" => n = 11
    Thay n = 11 vao khai trien (2 + x)" ta diioc :

    (2 + x ) " = 2"c?, + 2^°c;jx +... + 2c;?x^°'+ c;;x"
    32.

    CHI

    (*)

    He so cua x^° trong khai trien (*) la : a^o = 2C\\ 22.
    Khai trien bieu thufc P(x) = x ( l - 2 x f + x^(l + Sx)^** va viet P(x) diTdi
    dang da thufc vdri luy thifa tang cua x. Hay t i m he so ciia x'' ciia da
    thufc do.
    D A N

    Ta

    CO :

    x ( l - 2xy^ = x(C° - 2C^x + 2'C5'x' - 2''C^x' + 2'C5'x' - 2'C^x'^)
    x ' ( l + Sx)"" = x^(C°o + 3Cj„x + 3'Cfnx' + 3'C;'nx' +
    + 3*C,'x" +3^C?„x^+... + 3 " ' C ; V ° )
    =^ P(x) = C;|x + (C?o - 2C;)x' + ... + (3''C-^„ + 2''C^)x^ +... + 3^"c;°x
    Vay he so ciia so hang chufa x'' la :
    as =

    1 f) q Q

    + 2'Ct = 2 7 . ^ ^ ^ ^ + 16.5 = 3320.
    '
    1.2.3
    Hqc va on luyen theo CTDT mon Toan THPT

    .'' 1 5

    33.

    CAC BAITAP lij GIAI
    T i m so h a n g k h o n g chijfa x cQa k h a i t r i e n n h i thijfc N i u t o n .

    if

    X + —
    X

    .

    j

    DS : 924.

    K h a i t r i e n va r u t gon P(x) = (x + 1)^ + (x - 2f t h a n h da thufc v d i luy

    35.

    K h a i t r i e n va r u t gon bieu thufc :
    P(x) = ( 1 + x f + (1 + x)^ + (1 + xf + (1 + x)^ + (1 + x)^"
    ta dirgfc : P(x) = aiox^° + agx® + asx** + ... + aix + ao
    T i n h ag.
    £>S : a« = 55.

    34.

    thtra giam dan ciia x. T i m he so cua cac so hang chufa x^ va x^.
    DS : He so ciia x^ la : - 6 2 2 , ciia x^ la : 570.
    36.

    Chufng m i n h vdfi n nguyen diiOng t a c6 :

    a) cL+cL+... + CL=cL+cL+... + c r .
    b) c;, + 2Ci + 3Ci +... + nc;; - n2"-'.

    CHI DAN
    a) K h a i t r i e n P(x) = (x - 1)^" r o i cho x = 1.
    b) K h a i t r i e n P(x) = ( 1 + x)". T i m P'(x) r o i t i n h P ' ( l ) .

    T r o n g k h a i t r i e n n h i thufc

    38.

    Viet k h a i t r i e n Niutcfn, bieu thufc (3x - 1)^'', tU do chufng m i n h rSng :

    37.

    x
    28 \
    15
    . H a y t i m so' hang

    khong

    phu thuQC X , biet rSng : C;; + C;;' + C" ' = 79.
    DS :a = 792.
    39.

    T i m he so ciia so h a n g chufa x

    t r o n g k h a i tri§n

    + X

    Vx

    biet

    DS :a = 210.
    40.

    T i m he so ciia so h a n g chufa x^ t r o n g k h a i t r i e n

    biet

    C - j - C - = 7 ( n + 3).
    DS :a = 495.

    16 ;;'. TS. Vu The HUu - Nguygn Vinh Can

    §3. XAC SUAT
    K I E N THCTC
    P h e p thijf n g S u n h i e n , k h o n g g i a n m a u
    M o t phep thuf ( t h i n g h i e m ) c6 the lap l a i so I a n t u y y vdfi cac dieu
    k i e n co ban giong nhau nhiftig k h o n g the xac d i n h chSc chSn, k e t qua
    nao t r o n g m o i I a n thifc h i e n ma chi co the n o i k e t qua do thuoc m o t
    tap hop xac d i n h t h i t a goi la phep thii ngdu nhien. Tap hop t a t ca
    cac k e t qua co the co cua phep thijf ngau n h i e n goi la khong gian mdu
    ciia phep thijf do.
    B i e n co n g a u n h i e n
    M o t phep thuf ngau n h i e n T co k h o n g gian mau la E, m 6 i tap hop A c
    E bieu t h i mot bien co ngdu nhien ( l i e n quan tdfi T ) . B i e n co ngau
    n h i e n , chi gom m o t p h a n tuf ciia E dtfoc goi la bien co so cap. B i e n co
    dac biet gom m o i p h a n tuf cua E la bien co chdc chdn. B i e n co k h o n g
    chufa p h a n tuf nao ciia E la bien co khong the co, k i hieu 0. H a i b i e n
    CO A, B ma A n B = 0 t h i A va B difofc goi la hai bien co xung khdc.
    X a c s u a t c i i a b i e n co' n g a u n h i e n
    Phep thuf ngau n h i e n co k h o n g gian mau E gom n b i e n co scf cap co
    k h a n a n g xuat h i e n dong deu (dong k h a nang). B i e n co ngau n h i e n A
    gom k b i e n co' so cap (ciia E) t h i xac sudt cua bien co ngdu nhien A,

    1.

    2.

    3.

    4.
    a)
    b)
    c)

    d)
    5.

    ki hieu P(A) la t i so: P(A) = - .
    n
    C a c tinh chat cua xac suat
    B i e n co ngau n h i e n A bat k i ta deu co 0 < P(A) < 1.
    P(0) = 0, P(E) = 1.
    A va B la h a i b i e n co xung khSc (tufc A n B = 0) t h i
    P(A u B) = P(A) + P(B)
    Neu A va B la h a i b i e n co bat k i t h i
    P(A L ^ B ) = P(A) + P(B) - P(A n B).
    Neu A va A l a h a i b i e n co' ngau n h i e n ddi lap
    (tufc la A u A = E, A n A = 0) t h i P(A) = 1 - P(A).
    B i e n co d p c l a p v a q u y t ^ c n h a n x a c s u a t
    H a i bien co ngau n h i e n A va B cCing l i e n quan vdfi m o t phep thuf ngau
    n h i e n la doc lap uoi nhau neu viec xay r a hay k h o n g xay r a cua b i e n
    CO nay k h o n g a n h hifdng t d i k h a n a n g xay ra cua b i e n co k i a .
    Quy tdc nhan xac sudt
    Neu hai b i e n co ngau n h i e n A va B doc lap vdfi nhau t h i
    P(A n B) = P ( A ) ^ P ^

    7/15 X23'

    Ji

    Hoc va on luyen theo CTDT mon Toan THPT

    . 1 7

    41. Tung mot dong tien dong chat va can do'i ba Ian.
    a) Khong gian mau c6 bao nhieu phan tijf ?
    b) Goi A la bien co, trong ba Ian tung c6 diing mot Ian xuat hien mat sap.
    CHI DAN

    a ) K i hieu S neu dong tien xuat hien mat sap va N neu dong tien xuat
    hien mat ngiifa. Ket qua tung dong tien ba Ian bieu t h i bang day 3
    chuf cai S hoac N . Nhu vay khong gian mau gom 8 phan t i i .
    E = (NNN; NSN; SNN; NNS; NSS; SNS; SSN; SSS}.
    b) Bien co A ba Ian tung dong tien co dung mot Ian xuat hien mat sap
    bieu t h i boi tap hcfp
    A = ISNN; NSN; NNSl.
    Gia thiet dong tien la can doi va dong chat neu cac ket qua ciia phep
    thijf la dong kha nang. Khong gian m l u co 8 phan tuf. Bien co A co 3
    3
    phan tuf, do do xac suat cua A la : P(A) = —.
    8
    4 2 . Trong mot hop co 4 vien bi mau do, 3 vien bi mau xanh (cac vien bi
    chi khac nhau ve mau sic). Lay ngau nhien cung mot liic 3 vien bi.
    Tinh xac suat de trong 3 vien bi lay ra co diing hai vien bi mau do.
    CHI DAN

    43.

    Khong gian mau co
    bien co sof cap (co
    tap hcfp con 3 phan tuf
    trong 7 phan tuf), moi each lay 3 vien bi la lay 1 tap hcfp do. So each
    lay 2 vien bi do trong 4 vien bi do la C 4 each. So each lay 1 vien bi
    xanh trong 3 vien bi xanh la C 3 . So each lay 3 vien bi co 2 vien bi
    do, 1 vien bi xanh la C 4 . C 3 each.
    Xac suat trong 3 vien bi lay ra co 2 vien bi do la : P(A) = — i - ^ = —.
    C^^
    35
    Chon ngau nhien mot so tiT nhien co 3 chuf so. Tinh xac suat de so
    duoc chon la mot so chan co 3 chuf so khac nhau.

    CHI DAN

    Goi A la bien co so ducfc chon co 3 chuf so khac nhau la so chSn.
    Khong gian mau E la so cac so co 3 chU so (9 each chon chuf so' hang
    tram, 10 each chon chuf so hang chuc, 10 e a c h chon ehuT so hang dofn
    vi) la : 9 X 10 X 10 = 900 so.
    So cac so CO 3 chuf so khac nhau la so tan cung la 0 la : 9.8 = 72 so
    (9 each chon chuf so hang tram, 8 each chon chuf so hang chuc)
    So cac so chfin co 3 chuf so khac nhau co chuf so hang dcfn vi khac 0 la
    8.8.4 = 256 so.

    18

    ,

    TS. Vu The HUu - Nguyin VTnh Can

    (4 each chon chuf so h a n g don v i , 8 each chon chiJ so h a n g t r a m , 8
    each chon chuf so h a n g chuc).
    So cae so co 3 chOf so khac nhau l a so chSn l a : n = 72 + 256 = 328.
    Xac suat ciia A l a : P(A) = —

    = 0,3644.

    900

    44.

    Mot to hoc sinh co 10 ngiTcfi gom 6 nam va 4 nuf, chon ngau n h i e n mot
    nhom 3 ngiiofi eiia to. T i n h xac suat xay ra mot tri/cfng hop diidi day :

    a) Ca ba nguofi diioc chon deu l a n a m .
    b) Co i t n h a t mot t r o n g ba ngUoti duoe chon l a nam.
    CHI

    DAN

    10 9 8

    a) K h o n g gian mau co : C^^ = —'—^

    = 120 p h a n tijf.

    1.2.3

    Co C'l = ^'^'^

    = 20 each chon 3 ngi/ofi deu l a nam. Xac suat b i e n co 3

    1.2.3

    ngiicfi dU'ge chon deu l a n a m l a : P(A) =

    C'i

    20 1

    Cl

    120

    6-

    b) Goi B la bien co 3 ngUdi dirge chon co i t n h a t 1 nam. B i e n co doi lap
    eiia B l a 3 nguofi difgc chon deu l a niJ :

    C'*
    1
    — 29
    P(B) = — L = _ ^ P(B) = 1 - P(B) = — .
    C^o
    30
    30
    45.

    CHI

    Cho 8 qua can co k h o i lu'Ong I a n l i i g t l a 1kg, 2kg, 3kg, 4kg, 5kg, 6kg,
    7kg, 8kg. Chon n g a u n h i e n 3 qua can. T i n h xac s u a t de t o n g k h o i
    lu'Ong ba qua can dirge ehgn k h o n g virgt qua 9kg.
    DAN

    So each ehgn 3 qua can t r o n g 8 qua can (so p h a n tif eiia k h o n g g i a n
    mau) l a : Co =
    = 56 each.
    ^ 1.2.3
    A la bien co tong khoi lirgng 3 qua can dirge ehgn khong qua 9kg. Cae bien
    CO so cap thuan Igi cho A (thuoe tap hgp A) co 7 bien co la :
    ( 1 ; 2; 6), ( 1 ; 3; 5), (2; 3; 4), ( 1 ; 2; 3), ( 1 ; 2; 4), ( 1 ; 2; 5), ( 1 ; 3; 4)

    46.

    Xac suat ciia A : P(A) = — = 0,125.
    56
    Tung mot Ian h a i con sue sSc dong chat can doi.

    a) T i n h xac suat b i e n co t o n g so cham t r e n hai con sue sSc b a n g 8.
    b) T i n h xac suat b i e n co t o n g so cham t r e n hai con sue sac l a m o t so le
    hoac mot so chia het eho 3.
    CHI

    DAN

    K h o n g gian mau eo 36 p h a n tijf (6 x 6 = 36 cap so (i; j ) vdri i , j nguyen
    dirgng 1 < i < 6; 1 < j < 6).
    Hoc va on luyen theo CTDT mon Toan THPT

    19

    a) Cac b i e n co sof cap t h u a n Igfi b i e n co A ( t o n g so c h a ...
     
    Gửi ý kiến

    CHÀO MỪNG QUÝ THẦY CÔ VÀ QUÝ BẠN ĐỌC ĐÃ ĐẾN TƯỜNG WEBSITE CỦA THƯ VIỆN TRƯỜNG THPT BẮC SƠN - LẠNG SƠN!

    "Việc đọc rất quan trọng. Nếu bạn biết cách đọc, cả thế giới sẽ mở ra cho bạn.” - Barack Obama